

A Problem

Find digitsA,...,I such that
1. ABC + DEF = GHI,
2. A through I are distinct,
and 3. Each of 1, 2, ..., 9 is used exactly once.

218 + 349 = 567

How many solutions are there to this problem?

Possible Approaches

Count the number of possible sums Count the number of possible addends Count how many solutions there are for a given sum

218 + 349 = 567 219 + 348 = 567248 + 319 = 567 249 + 318 = 567

9(8)(7) = 504 3-digit numbers containing no O's such that all 3 digits are distinct.

9(8)(7) = 504 3-digit numbers containing no O's such that all 3 digits are distinct.

But... the first digit of the sum cannot be 1 and cannot be 2. (Why not?)

What Else Can We Say?

The first digit cannot be 3 either:

1BC +2EF 3HI B + E < 10So, {B, E} = {4, 5} and H = 9. {C,F,I} = {6,7,8} is impossible.

What Else Can We Say?

6(8)(7) = 336 3-digit numbers containing no Os such that all 3 digits are distinct and the first digit is at least 4.

What else can we say?

We can use

to help.

Think remainders:

"7 is congruent to 1 mod 3" means 7 ÷ 3 has a remainder of 1

We can use

to help.

Think remainders:

"8 is congruent to <u>2</u> mod 3" means 8 ÷ 3 has a remainder of 2

We can use

to help.

Think remainders:

"24 is congruent to <u>0</u> mod 3" means 24 ÷ 3 has a remainder of 0

We can use

to help.

Think remainders:

Any integer will be congruent to either 0, 1, or 2 mod 3.

How can we do arithmetic "mod 3?"

What is 7 + 10 congruent to mod 3? 7 1 (mod 3) 10 1 (mod 3) So, 7 + 10 1 + 1 (mod 3).

How can we do arithmetic "mod 3?"

What is 7(10) congruent to mod 3? 7 1 (mod 3) 10 1 (mod 3) So, 7(10) 1(1) (mod 3).

Back to the Problem

ABC + DEF = GHI

100A + 10B + C + 100D + 10E + F = 100G + 10H + IA + B + C + D + E + F G + H + I (mod 3) Also, A + B + C + D + E + F + G + H + I = 1 + ... + 9 = 45 0 (mod 3) What could A + ... + F and G + H + I be congruent to mod 3? 1: A + ... + F + G + H + I

100A + 10B + C + 100D + 10E + F = 100G + 10H + I $A - B + C + D - E + F \quad G - H + I \pmod{11}$ $A + C + D + F + H \quad B + E + G + I \pmod{11}$ $A + \dots + I \quad 2(B + E + G + I) \pmod{11}$ $2(B + E + G + I) \quad 1 \pmod{11}$ $B + E + G + I \quad 6 \pmod{11}$

B + E + G + I 6 (mod 11) Look at B, E, and H: ABC + DEF GHI

We will have different cases based on whether we need to carry from the ones place or to the hundreds place.

B + E + G + I 6 (mod 11) Look at B, E, and H:

B, E, H relationship	Carry?	
B + E = H	None	

ABC

GHI

$\mathsf{B} + \mathsf{E} + \mathsf{G} + \mathsf{I}$

B + E + G + I 6 (mod 11) Look at B, E, and H:

B, E, H
relationshipCarry?B + E = HNoneB + E + 1 = HFrom Ones Place OnlyB + E = H + 10To Hundreds Place Only

ABC

GHI

B + E + G + I 6 (mod 11) Look at B, E, and H:

B, E, H relationship	Carry?	
B + E = H	None	

ABC

GHI

B + E + G + I 6 (mod 11) Look at B, E, and H:

B, E, H
relationshipCarry?Value of G + H + IB + E = HNone6 (mod 11)B + E + 1 = HFrom Ones Place Only7 (mod 11)B + E = H + 10None \Box

ABC

GHI

Back to the Problem

$\begin{array}{cccc} 412 & GHI & 987 \\ 7 & G+H+I & 24 \\ and G+H+I is a multiple of 3. \end{array}$

9, 12, 15, 18, 21, 24 Also, G + H + I must be congruent to 6, 7, or 8 mod 11. So, G + H + I = 18.

Possible Sums

459	468	486	495	549	567	576
594	639	648	657	675	684	693
729	738	756	765	783	792	819
837	846	864	873	891	918	927
936	945	954	963	972	981	

(Three of these don't work. Which ones?)

981

```
235 + 746 = 981
236 + 745 = 981
245 + 736 = 981
246 + 735 = 981
324 + 657 = 981
327 + 654 = 981
354 + 627 = 981
357 + 624 = 981
```

How many solutions are there in all? What are they?

Try it!

Thank you! jwaustin@salisbury.edu